Görmenin Kimyası
Fotonlar retinadaki hücrelere çarptıklarında, adeta birbiri ardına ustaca dizilmiş domino taşlarını harekete geçirir. Bu domino taşlarının ilki, "11-cis-retinal" ismi verilen ve fotonlardan etkilenen bir moleküldür. Kendisine foton isabet ettiği anda 11-cis-retinal molekülü şekil değiştirir. Bu şekil değişikliği, 11-cis-retinal'e bağlı olan "rodopsin" adlı proteinin de şeklini değiştirir. Rodopsin, bu sayede, daha önce hücre içinde yer alan ama şeklinin uyumsuzluğu nedeniyle etkileşim içine giremediği "transdusin" adlı bir başka proteinle birleşebilecek hale gelir.
Görmedeki ilk aşama. Işığın fotonları, küçük bir organik molekül olan 11-cis-retinalin şeklinde değişikliğe neden olur. Bu durum bağlı olduğu ve daha büyük bir protein olan rodopsinin şeklinde değişiklik yapar.
Transdusin, rodopsinle tepkimeye girmeden önce GDP isimli bir başka moleküle bağlıdır. Rodopsin'e bağlandığı anda, GDP'den ayrılır ve GTP isimli yeni bir moleküle bağlanır. Artık 2 protein (rodopsin ve transdusin) ve bir kimyasal molekül (GTP) birbirine bağlanmış durumdadır. Bu yeni yapının tümüne "GTP-transdusinrodopsin" ismi verilir.
Ancak daha işlem yeni başlamıştır. GTP-transdusinrodopsin adlı yeni birleşim, hücrenin içinde önceden beri var olan "fosfodiesteraz" adlı bir başka proteinle bağlanmaya uygun bir yapıdadır. Bu bağlanma zaman geçirilmeden hemen yapılır. Bu bağlanmanın sonucunda ise fosfodiesteraz proteini, yine daha önceden hücre içinde var olan cGMP isimli bir molekülü parçalama özelliği kazanır. Bu işlem bir kaç tane değil, milyonlarca protein tarafından gerçekleştirildiği için, hücrenin içindeki cGMP oranı hızla düşer.
Peki tüm bunların görmeyle ilgisi nedir? Bu sorunun cevabını bulmak için, bu ilginç kimyasal reaksiyon zincirinin son aşamasına bakalım. Hücrenin içindeki cGMP yoğunluğunun düşmesi, hücrenin içindeki "iyon kanalları"nı etkileyecektir. İyon kanalları dediğimiz şey, hücre içindeki sodyum iyonlarının sayısını düzenleyen proteinlerdir. Normalde cGMP molekülleri, hücreye dışarıdan sodyum iyonları taşımakta, bir başka molekül de fazla iyonları dışarı atmakta ve böylece denge sağlanmaktadır. Ancak cGMP moleküllerinin sayısı azalınca, hücredeki sodyum iyonlarının da sayısı azalır. Bu sayı azalması, hücre içinde elektriksel bir dengesizlik meydana getirir. Bu eletriksel dengesizlik, hücreye bağlı olan sinir hücrelerini etkiler ve bizim "elektrik uyarısı" dediğimiz şey oluşur. Sinirler bunları beyne aktarır ve orada da "görme" dediğimiz işlem yaşanır.
Kısacası tek bir foton, retinadaki hücrelerin tek birisine çarpmış ve birbirini izleyen zincirleme reaksiyonlar sayesinde hücrenin bir elektrik uyarısı üretmesini sağlamıştır. Bu uyarı, fotonon enerjisine göre değişir, böylece bizim "güçlü ışık", "zayıf ışık" dediğimiz kavramlar oluşur. İşin en ilginç yanlarından birisi, üstte anlattığımız tüm bu karmaşık reaksiyonların, saniyenin en fazla binde biri kadarlık kısa bir sürede olup bitmesidir. Daha da ilginç olan bir nokta, bu zincirleme reaksiyon tamamlandığı anda, hücre içindeki özel bazı proteinlerin, 11-cis-retinal, rodopsin, transdusin gibi unsurları tekrar eski hallerine döndürmüş olmasıdır. Göz, sürekli fotonların akını altındadır ve gözün duyarlı hücrelerindeki zincirleme reaksiyonlar, fotonların her birinin algılanmasını sağlar.
34
Yukarıdaki şema görmenin biyokimyasını göstermektedir. RH: Rodopsin, Rhk: Rodopsin Kinaz, A: Arestin, GC: Guanilat Siklaz, T: Trandusin, PDE Fosfodiesteraz, ile sembolize edilmiştir.
Burada kısaca özetlediğimiz bu görme işleminin aslında çok daha kompleks detayları vardır. Ancak bu kabataslak özet bile, ne kadar muhteşem bir sistemle karşı karşıya olduğumuzu göstermeye yeter. Gözün içinde öylesine kompleks, öylesine iyi hesaplanmış bir sistem vardır ki, gözün içindeki kimyasal reaksiyonlar, Guinness Rekorlar Kitabı'na geçmiş olan ünlü domino taşları gösterilerini hatırlatır. Bu gösterilerde onbinlerce domino taşı, bir sonrakini devirecek biçimde dizilmekte ve sonra da sadece ilk taşın düşürülmesiyle tüm sistem harekete geçmektedir. Domino taşlarından oluşan zincirin bazı noktalarına ilginç düzenekler kurulmakta, örneğin bir taşın düşmesi küçük bir vinci harekete geçirmekte, vinç, uzağa taşıdığı tek bir domino taşını tam gerekli noktaya koyup düşürerek yeni bir zincirleme düşüş başlatmaktadır.
Elbette böyle bir domino gösterisi izleyen bir insan, tüm bu taşların ve düzeneklerin, bulundukları yere, rüzgarla, selle ya da yer sarsıntısıyla "tesadüfen" geldiklerini düşünmez. Her taşın büyük bir dikkat ve bilinçle yerine yerleştirilirdiği açıktır. İnsan gözündeki zincirleme reaksiyon da, "tesadüf" kelimesini akla getirmenin bile saçma olduğunu gösterir. Sistem çok farklı parçaların çok hassas dengelerle bir araya gelmesiyle oluşmuştur ve açık bir "tasarım"ın göstergesidir. Göz, kusursuzca yaratılmıştır.
Ünlü biyokimyacı Michael Behe Darwin'in Kara Kutusu isimli kitabında gözün kimyası ve evrim teorisi hakkında şu yorumu yapmaktadır:
Görmenin kara kutusu artık açılmış durumdadır ve Darwin’in 19. yüzyılda yaptığı ve hala günümüz evrimcilerinin yapmaya devam ettiği gibi, tüm gözün sadece anatomik yapısını değerlendiren evrimci açıklamalar artık yeterli olmamaktadır. Darwin’in basit zannettiği anatomik aşamaların ve yapıların her biri, gerçekte sözlerle örtbas edilemeyecek, hayret verici derecede karmaşık biyokimyasal süreçleri kapsamaktadır.
35
Görmenin Sonrası
Buraya kadar anlattıklarımız, sadece sahildeki adamın, arkadaşından yansıyarak gözüne gelen fotonlarla ilk temasıdır. Retina hücreleri, az önce anlattığımız kompleks kimyasal işlemler sayesinde fotonları algılamış ve elektrik sinyalleri üretmiş olur. Bu sinyallerde öyle bir bilgi vardır ki, söz konusu arkadaşın yüzü, vücudu, kıyafeti, saçının rengi ya da yüzündeki küçücük bir iz bile işlenmiştir. Sadece bu kişinin değil, etraftaki her cismin en küçük detayı bile atlanmamış ve elektrik sinyallerine kodlanmıştır. Ama bir de bu sinyallerin beyne ulaştırılması gerekmektedir.
Retina moleküllerinin hareketiyle uyarılan sinir hücreleri (nöronlar), tepki gösterir. Bu tepki kimyasaldır; bir nöron harekete geçtiği anda yüzeyindeki protein molekülleri aniden şekillerini değiştirir. Bu hareket, pozitif elektrik yüküne sahip olan sodyum atomlarının akışını bloke eder. Elektrik yüklü atomların akışındaki bu değişiklik, hücrenin içinde bir voltaj farklılığına neden olur. Voltaj farklılığı, elektrik sinyali demektir. Bu sinyal, milimetre cinsinden ifade edilen bir mesafeyi kat ettikten sonra sinir hücresinin ucuna ulaşır. Ancak burada bir sorun vardır: İki sinir hücresi arasında bir boşluk bulunmaktadır ve elektrik sinyalinin bu boşluğu aşması için özel bir önlem gereklidir. Nitekim bu önlem alınmıştır: İki sinir hücresi arasında bulunan bazı özel serbest moleküller, sinyali taşıma işini üstlenir. Bir milimetrenin dört ile kırkta biri kadar bir mesafe kat ederek diğer nörona ulaşır ve mesajı tekrar iletir. Retinadan gelen elektrik uyarısı, bu sayede bir nörondan bir diğer nöron hücresine iletilerek ilerler ve beyne varır.
Burada, bu özel sinyaller görme korteksine gider. Bu görme korteksi 2.5 mm kalınlığında 13 m2 alanında üst üste binmiş doku tabakalarından oluşmuştur. Bu tabakaların bir tanesi yaklaşık 17 milyon nöronu içerir. Gelen sinyali ilk olarak 4. tabaka alır. Ön bir analiz yapar ve bilgiyi diğer tabakalardaki nöronlara ulaştırır. Her aşamada her bir nöron diğer bir nörondan sinyal alabilir.
Bu sayede dışardaki adamın görüntüsü, kusursuz bir biçimde beynin korteks merkezinde oluşur. Ancak bir de bu kişinin tanınabilmesi için, hafıza hücrelerinin yoklanması, bu kişinin yüzü ile hafızadaki bilgilerin karşılaştırılması gerekmektedir. Bu iş de başarı ile yapılır. En ufak bir detay bile atlanmaz. Hatta adamın yüzü, beyin korteksindeki görüntüde, hafızadaki yüz bilgisine göre biraz daha renksiz duruyorsa, kişi bu farkı hissedecek ve "arkadaşımın yüzü bugün acaba neden solgun" diye düşünecektir.
Selamlaşma
Böylece bir saniyeden çok daha kısa bir zaman dilimi içinde, "görme" ve "tanıma" gibi iki ayrı mucize gerçekleşmiş olur.
Yüzlerce milyon ışık parçacığıyla gelen bilgi, sahildeki adamın bilincine ulaşmış, işleme tutulmuş, bu arada hafıza taranmış ve kişi böylece arkadaşını tanımıştır.
Tanımanın ardından selamlaşma faslı gelecektir. Kişi, tanıdık insanlara karşı vermesi gereken tepkiyi, yine saniyenin binde biri kadarlık bir süre içinde hafıza hücrelerinden bulup çıkaracaktır. Örneğin gülümsemesi ve "merhaba" demesi gerektiğini belirleyecektir. Bunun üzerine, yüz kaslarını kontrol eden beyin hücreleri devreye girecek ve bu kaslara bizim "gülümseme" olarak bildiğimiz hareketi yapmaları için emir verecektir. Bu emir yine nöronlarla aktarılacak ve kaslarda yine son derece kompleks işlemler başlayacaktır.
Aynı anda bir dizi emir de boğazdaki ses tellerine, dile ve çene kaslarına gidecek ve "merhaba" sesinin çıkarılması için gerekli kas hareketlerini başlatacaktır. Bu ses çıktığı anda, hava molekülleri bir araya toplanıp uzaklaşmaya ve kendisine selam yollanan arkadaşın kulağına doğru gitmeye başlar. Bu ses dalgaları kulak kepçesi tarafından toplanır. Ses, yolculuğu sırasında saniyenin ellide birinde 6 m yol kat eder.
Kulak kepçesi, sesi toplayacak şekilde tasarlanmıştır. Kepçe tarafından odaklanan ses, kulak kanalına aktarılır. Kulak kanalının iç kısmı, kulağı dışardan gelen kirlere karşı korumak üzere bazı salgılar çıkaran hücrelerle ve tüylerle kaplanmıştır. Kanalın sonunda, orta kulağın ağzına yerleştirilmiş olan kulak zarı vardır. Zarın arkasındaki orta kulak boşluğunda, çekiç, örs ve üzengi adlı üç küçük kemik bulunur. Burnun arka kısmına bağlı olan östaki borusu ise, orta kulaktaki hava basıncını dengelemektedir. Orta kulağın bittiği yerde, çok hassas bir duyma mekanizmasına sahip olan sıvı dolu "salyangoz" bulunur.
Adamın iki kulağının içinde titreşen hava, hızla orta kulağa kadar olan mesafeyi kat eder. 7.6 mm çapında olan kulak zarı titremeye başlar. Bu titreme hareketi üç küçük kemiğe iletilir. Ses titreşimleri böylece mekanik titreşimlere dönüşür. Daha sonra ise bu kemiklerdeki titreşimler iç kulağa iletilir ve buradaki salyangoza benzeyen koklea isimli yapının içinde bulunan özel sıvıyı hareketlendirir.
SESİN, KULAKTAN BEYNE YOLCULUĞU O, sizin için kulakları, gözleri ve gönülleri inşa edendir; ne az şükrediyorsunuz.
(Mü'minun Suresi,78)
Kulak o denli kompleks bir tasarım harikasıdır ki, evrim teorisinin canlılığın varoluşuna getirmeye çalıştığı "tesadüf" açıklamasını tek başına geçersiz kılar. Kulaktaki duyma işlemi, tümüyle indirgenemez kompleks bir sistem sayesinde mümkün olur. Önce havadaki ses dalgaları kulak kepçesi (1) tarafından toplanır. Sonra kulak zarına (2) çarpar. Zar, orta kulak kemiklerini(3) titreştirir. Ses titreşimleri böylece mekanik titreşimlere dönüşür. Titreşimler, iç kulaktaki "vestibüler pencere" denen kısma (4) geçer ve kulak salyangozunun (5) içindeki sıvıyı titreştirir. Bu sıvının titreşimleri, sinirsel uyarılara dönüşerek işitme yolları (6) ile beyne gidecektir.
Ancak kulak salyangozu içinde çok kompleks bir mekanizma vardır. Salyangoz (ortadaki büyütülmüş resim) spiral biçimindeki bazı özel kanallara sahiptir (7). Sıvı bu kanalların içindedir. Kanalların içindeki ayrı bir bölmede (8) ise, "corti organı" (9) bulunmaktadır. (En sağdaki şekilde, corti organı büyütülmüş olarak görülüyor) Corti organının yüzeyindeki hücrelerin (10), "tüycük" adı verilen antenleri vardır (12). Salyangoz içindeki sıvının titreşimleri, corti organının yüzeyindeki zar (11) tarafından bu tüycüklere aktarılır. Kulağa gelen sesin frekansına göre, tüycükler farklı şekilde titreşir. İşte bizim duyduğumuz sesleri birbirinden ayırt etmemiz, bu sayede mümkün olur.
Ses titreşimlerini tüycükler (10) sayesinde algılayan hücreler (13) bunları elektriksel uyarılara dönüştürür ve sinirlere aktarır. Bu sinirler (14), şakak kemiğinden çıkarak pons ile omurlik soğanı arasından beyine girer (15). Bundan sonra beyindeki işitme yolu şöyle gider: Dördüz yumrular (16), iç geniculate cisim (17) ve şakak lobu kabuğundaki işitme merkezleri (18).
Beynin içindeki mavi çizgi, yüksek frekansların, kırmızı ise düşük frekansların yolunu göstermektedir. Her iki kulağımızdaki salyangoz da, hem sağ, hem sol beyin yarım küresine sinyal yollar.36
Görüldüğü gibi duymamızı sağlayan sistem, en küçük ayrıntısına kadar ince ince tasarlanmış farklı yapılardan oluşmaktadır. Bu sistem hiçbir şekilde "aşama aşama" oluşamaz, çünkü en küçük bir detay bile eksik olsa, tüm sistem işe yaramaz hale gelecektir. Açıktır ki, kulak, kusursuzca yaratılmıştır.
Koklea'nın içerisinde farklı ses tonları birbirinden ayrıştırılır. Kokleanın içinde, tıpkı bir müzik aleti olan harpteki teller gibi, değişik kalınlıklarda ince teller uzanmaktadır. Adamın arkadaşının sesi şimdi bu telleri adeta çalmaktadır. "Merhaba" sesi, başlangıçta düşük perdeden başlamış sona doğru yükselmiştir. Önce kalın teller titreşir sonra bunu inceleri takip eder. Sonunda iç kulaktaki on binlerce çubuk şekilli cisimcik, kendi titreşmelerini işitme sinirlerine aktarır.
Orta kulaktaki üç kemik, kulak zarı ile iç kulağın duvarı arasında bir bağlantı görevi yapmaktadır. Birbirine mafsallarla bağlı olan bu kemikler, kulak zarının titreşimlerini daha da güçlendiren birer mekanik kaldıraç gibidir. Güçlendirilen titreşimler iç kulağa aktarılır. Üzengi kemiğinin oval pencerenin zarına vurmasıyla oluşan basınç dalgası, salyangoz içindeki sıvıda dolaşır. Sıvı tarafından uyarılan algılayıcılar, "duyma" işlemini başlatacaktır.
Artık "merhaba" sesi sadece bir elektrik sinyalidir. Bu sinyal, işitme sinirleri içinde beyne doğru hızla ilerler. Sinirlerdeki bu yolculuk, sinyaller beyindeki duyma merkezine ulaşıncaya kadar devam eder. En sonunda adamın beynindeki trilyonlarca nöronun büyük bir kısmı, elde edilen görme ve işitme bilgilerini değerlendirmekle meşguldür. Adam arkadaşını algılamış ve onun merhabasını almıştır. Şimdi duyduğu merhabaya cevap verecektir. Yüzlerce kasın, saniyenin çok minik bölümlerinde mükemmel bir eş güdümle çalışması sonucu ortaya çıkan konuşma eylemi gerçekleşecektir: Beyinde cevap vermek üzere tasarlanan düşünce, önce konuşulan dile göre formüle edilir. Beyindeki Broca Bölgesi denen ve beynin konuşma merkezlerini içeren bölge, harekette rol alacak tüm kaslara gerekli emirleri gönderir.
İlk önce, akciğer "sıcak hava" sağlar. Sıcak hava, konuşmanın ham maddesidir. Bu mekanizmanın ilk evresi, atmosferdeki oksijen yüklü havanın içeri çekilmesidir. Hava adamın burnundan girer, burun boşluğu, boğaz, nefes borusundan bronş tüplerine, oradan da akciğerlere geçer. Havadaki oksijen akciğerlerde kana karışır. Kanın artık maddesi olan karbondioksit de dışarı verilir. Artık hava ciğerlerden çıkarak dışarı çıkmaya hazırdır.
Konuşabilmek için, yalnızca ses telleri, burun, ciğerler ve hava yolları değil, onların bağlı olduğu kas sistemleri de uyum içinde çalışır. Konuşma sırasında çıkan sesler, gırtlaktaki ses tellerinin hava geçişi sırasında titreşmesiyle oluşur.
Ciğerlerden geri dönen hava, boğazdan geçerken, ses telleri denen iki doku kıvrımı arasından geçer. Bu teller, bir tür perdeye benzer. Bağlı oldukları küçük kıkırdakların etkisine göre hareket eder. Adam konuşmadan önce teller açık vaziyettedir. Konuşma sırasında bir araya getirilir ve soluk verirken çıkan hava ile titreştirilir. Bu sesin perdesini de belirler. Teller gerildikçe perde yükselir.
Hava ses tellerinden geçmek suretiyle seslendirilmiştir. Seslendirilmiş hava, boğazın kontrolü altında burun ve ağız aracılığıyla yüzeye ulaştırılır. Adamın ağız ve burun yapısı, sesinin kendine özgü bireysel niteliklerini verir. Dil damağa belirli miktarda yaklaşıp uzaklaşmakta, dudaklar da büzülüp yayılmaktadır. Bu işlemlerde birçok kas, büyük bir hızla hareket eder.
37
Adamın arkadaşı, duyduğu sesi, hafızasındaki eski ses kayıtları ile anında karşılaştırır. Bu karşılaştırma sayesinde sesin "tanıdık" bir ses olduğunu hemen anlar. Artık iki taraf da birbirini tanımış ve merhabalaşmıştır.
Tüm bu anlattıklarımız, yalnızca iki arkadaşın birbirlerini görüp karşılıklı selam verebilmeleri için gerçekleşmiştir. Tüm bu olağanüstü işlemler, akıl almaz bir hız içinde ve kusursuzca gerçekleşir. Bizim ise bunlardan haberimiz bile olmaz. Sanki çok kolay ve basit bir iş yaparmışcasına, görür, duyar ve konuşuruz. Oysa bunların gerçekleşmesi için kurulmuş olan sistemler ve gerçekleşen işlemler, hayal bile edemeyeceğimiz kadar komplekstir.
Ses telleri, iskelet kaslarına bağlı bulunan esnek kıkırdak şeritlerinden oluşur. Kaslar durgun halde iken teller açıktır (Solda). Konuşma sırasında ses telleri kapanır. Teller gerildikçe ses perdesi de yükselir (altta).
Bu kompleks sistem, evrim teorisinin asla açıklayamadığı eşsiz tasarımlarla doludur. Görmenin, işitmenin, akıl yürütmenin nasıl ortaya çıktığı, asla evrimin "tesadüf" inancıyla açıklanamaz. Aksine, tüm bunların çok üstün bir Yaratıcı tarafından kusursuzca yaratıldığı ve bize verildiği açıktır. İnsan, kendi görmesini, duymasını ya da düşünmesini sağlayan sistemlerin nasıl çalıştığını bile tam olarak kavramaktan acizken, bu sistemleri yoktan yaratmış olan Allah'ın sonsuz aklı ve gücü aşikardır.
Ses tellerinin çalışması hızlı fotoğraf tekniğiyle görüntülenmiştir. Üstte görülen tüm farklı pozisyonlar, ses tellerinin saniyenin onda biri kadarlık süre içinde gösterdiği farklı hareketlerdir. Konuşmamız, ses tellerindeki bu kusursuz tasarım sayesinde mümkün olmaktadır.
Allah Kuran'da insanı bu gerçek üzerinde düşünmeye ve buna karşılık şükredici olmaya davet etmektedir:
Allah, sizi annelerinizin karnından hiçbir şey bilmezken çıkardı ve umulur ki şükredersiniz diye işitme, görme (duyularını) ve gönüller verdi. (Nahl Suresi, 78)
Bir başka ayette ise şöyle buyrulur:
O, sizin için kulakları, gözleri ve gönülleri inşa edendir; ne az şükrediyorsunuz. (Müminun Suresi, 78)
Dipnotlar
29. J. A. Summer, Maria Torres, Scientific Researchs about Bats, Boston: National Academic Press, Eylül 1996, s. 192-195.
30. Donald Griffin, Animal Engineering, San Francisco: The Rockefeller University - W.H. Freeman Com., s. 72-75.
31. J. A. Summer, Maria Torres, Scientific Researchs about Bats, Boston: National Academic Press, Eylül 1996, s. 192-195.
32. Bu sistemin detayları için bkz: W. M. Westby, "Elektrikli Balıkların Haberleşmesi", Bilim ve Teknik, Şubat 1985, s 3-6.
33. Charles Darwin, Türlerin Kökeni, Ankara: Onur Yayınları, 1996, s.206
34. Michael Behe, Darwin Black Box, New York: Free Press, 1996, s. 18-21.
35. Michael Behe, Darwin Black Box, New York: Free Press, 1996, s. 22.
36. Jean Michael Bader, "Le gené de L’Oreille Absolue", Science et Vie, sayı 885, Haziran 1991, s. 50-51.
37. Marshall Cavendish, The Illustrated Encyclopedia of The Human Body, London: Marshall Cavendish Books Limited, 1984, s.95-97.