Güneşin içinde bulunduğu 100 ışık yılı büyüklüğündeki bölgede büyük kütleli bulutların bulunmamasına rağmen, yerel galaktik çevrenin çok kısa zaman ölçeklerinde değişebileceği mümkün görülüyor. Yerel Kabarcığın düşük yoğunluğu, süpernova patlamalarında oluşan süperkabarcığın ve şok dalgalarının boşluk içinde kolayca ilerlemesine ve hatta güneşin bile böyle ortamlar içerisinden geçebilmesine olanak vermektedir. Gerçekten, geçen 250,000 yıl içinde güneş Scorpius – Centaurus topluluğundaki yıldız oluşum bölgesinden atılan maddenin içerisine girmiştir. Yıldızlararası ortamın geçen 2,000 yıl içinde değişmiş olabileceğini dair bazı şüpheler vardır. Ama bu belirsizdir. Çünkü astronomlar yerel yıldızlararası bulut yapılarını halen tam anlayamamışlardır. Güneş sistemini kuşatan bulut Scorpius – Centaurus topluluğundan dışarıya akan maddeden oluşur. Yakın yıldızların ortalama hareketine göre bir kişinin bakış açısı sabit kabul edildiğinde, güneşin Yerel Yıldızlararası Buluta göre hareketi hemen hemen dik olur. Bir başka ifadeyle, güneş civarındaki yıldızlararası yapı güneşin hareketine göre dik ve güneş sisteminin içinden geçer. Bu iki hareketin sonucu olarak, galaksi merkezine yaklaşık 15 derece eğiminde ve tutulum (ekliptik) düzlemine çok yakın bir doğrultuda saniyede yaklaşık 26 km’lik hızla güneşe doğru akan bir yıldızlararası madde gözlenir. Güneşe doğru akan bu madde Yerel Yıldızlararası Rüzgâr olarak bilinir (Şekil 1).
Şekil 1. Güneşin (sarı ok) Yerel Yıldızlararası Bulutlara (mor ok) doğru hareketi sonucu oluşan Yerel Yıldızlararası Rüzgâr (beyaz ok), tutulum düzlemi üzerinden güneş sistemi içine saniyede 26 km lik bir hızla girmektedir. Yerel Kabarcığın ve Yerel Yıldızlararası Bulutun kökeni bugüne kadar açıklığa kavuşturulamamıştır. Bazı astronomlar, Scorpius, Centaurus, Orion takımyıldızlarında ve Gum bulutsusunda olduğu gibi art arta gelen yıldız oluşumlarının neden olduğu şok dalgalarının, galaksinin spiral kolları arasındaki uzayı boşalttığına inanmaktadırlar. Diğer astronomlar Scorpius – Centaurus topluluğunda oluşan bir süpernova patlamasının bugünkü Yerel Kabarcığı oluşturduğunu düşünmektedirler. Yerel Yıldızlararası Bulutun ise ya yıldız oluşumunun neden olduğu rüzgârlardan itilen madde ile ya da bir süpernova patlamasının neden olduğu süperkabuktan oluştuğu düşünülmektedir (Şekil 2).
Şekil 2. Güneşin de içinde bulunduğu 1,500 ışık yılı büyüklüğündeki galaktik ortamda farklı yoğunluk ve sıcaklıkta bulunan gaz bulutları vardır. Güneş, birkaç milyon yıldır çok düşük yoğunluklu sıcak bir bölge olarak bilinen Yerel Kabarcık (siyah) içerisinde yolculuğuna devam etmektedir. Yerel Kabarcık Scorpius – Centaurus yıldız oluşum bölgesinden gelen kısmen iyonize (mor) olmuş madde ile çevrilidir. Aquila Yarığı gibi soğuk ve yoğun moleküller bulutlar (turuncu) yeni yıldızların oluşacağı yerlerdir. İyonize hidrojenden oluşan Gum Bulutsusu (yeşil) 11,000 yıl önce patlayan Vela süpernova kalıntısını (pembe) içinde barındırır. Helyosfer
Yerel Yıldızlararası Rüzgâr güneş sistemi içinde eserken, güneş rüzgârı da yerel yıldızlararası rüzgârın içinden geçer. Güneş rüzgârı, yüksek hızla güneşten dışarı doğru akan proton, helyum çekirdeği ve elektronlardan oluşan sıcak bir plazmadır. Rüzgârın kaynağı koronadır. Güneşin en dış katmanını oluşturan korona, güneş tutulmasında gözlenebilen ve sıcaklığı milyon dereceye varan bir bileşendir. Güneş rüzgârının, güneşin kendi ekseni etrafındaki dönüşünden kaynaklan bir manyetik alanı vardır. Güneşin koronal deliklerinden ses üstü (süpersonik) hızlarla yayılan güneş rüzgârı, Plüton gezegeninin ötesine kadar uzanarak yüklü yıldızlararası gaz ile etkileşir.
Dış güneş sistemi içinde etkisini yitirmeye başlayan güneş rüzgârının yoğunluğu azalır. 1 Astronomik Birim (A.B.) uzaklıkta (Dünya güneş uzaklığı – 150 milyon km) tipik bir güneş rüzgârının santimetreküpte yaklaşık 5 parçacıktan ibaret bir yoğunluğu olup, hızı yaklaşık 400 km/sn tir. Güneş rüzgârı 80 ile 100 A.B. uzaklıkta ses üstü hızından ses altı (subsonik) hızına geçerken, güneşten 130 ile 150 A.B. uzaklıkta yıldızlararası iyonların etkileşmesiyle durgunlaşmaya başlar. Güneş rüzgârının ses üstü hızından ses altı hızına geçtiği bölge sonlandırma şoku (termination shock), durgunlaştığı bölge heliopause ve güneş rüzgârının durduğu yer ise helyosferin sınırı olarak bilinir.
Bilim adamları tarafından oluşturulan modeller helyosferin su damlası şeklinde olduğunu göstermektedir. Helyosferin boyutları oldukça büyük olup güneş rüzgârının yüklü yıldızlararası gaz ile etkileşimi sonucu belirlenebilir. Yıldızlararası ortamın yaklaşık %30 u iyonize -çoğu proton ve elektron- olmasına karşın, bu yüklü parçacıklar güneş rüzgârında bulunan manyetik alan içerisinden geçmezler (çünkü Lorentz kuvveti bu yüklü parçacıkları manyetik alana bağlar). Bundan dolayı, yıldızlararası plazma helyosferin sınırında hem sıkıştırılır hem de saptırılır. Bununla birlikte, yüksüz hidrojen atomları yıldızlararası protonlar ile elektron alış verişinde bulunduğundan, yüksüz yıldızlararası hidrojenin küçük bir kısmı da helyosferin sınırında sıkıştırılıp ve saptırılır. Yüksüz hidrojen atomlarının oluşturduğu gözlenebilir bu durum hidrojen duvarı olarak bilinir.
Helyosferin dışında bulunan başka bir fenomen ise yay şok (bow shock) olarak bilinen Yerel Yıldızlararası Bulutların içinden ses hızından daha yüksek hızlar ile hareket eden (süpersonik) maddenin ürettiği etkidir. Buluttaki ses hızı saniyede 9.6 km ve güneşin de bulutlara göre göreceli hızı saniyede 26 km olduğundan helyosferdeki yay şoku 2.5 Mach (Mach = ses hızı) tır. Bununla birlikte, Yerel Yıldızlararası Bulutları içinde bir yay şokunu meydana getirebilecek 3 – 4 mikro gaussluk çok zayıf bir manyetik alan vardır (Şekil 3).
Şekil 3. Güneşin koronal deliklerinden çıkan güneş rüzgârı, yıldızlararası ortamdan güneş sistemine doğru akan madde ile etkileşir. İyonlaşmış gazlardan oluşan güneş rüzgârı sonlandırma şoku denen bölgede ses altı hızı ile ilerlerken, helyosferin sınırını ifade eden helyosfer durma noktasında (heliopause) hızını yitirerek tamamiyle durgunlaşır. Yıldızlararası rüzgârda çoğu hidrojen iyonundan oluşan yüklü parçacıklar (beyaz çizgi) helyosferin kenarlarında saptırılmalarına karşı, yüksüz hidrojen ve helyum atomları (pembe ok) helyosferin içerisine girebilir. 11 yıllık güneş aktivitesi güneş rüzgârının etkilediğinden, yıldızlararası ortamın homojen bir yapısı yoktur. Şekil üzerindeki renkler Kelvin cinsinden sıcaklıkları gösterir. Helyosfer içindeki Madde
Yıldızlararası ortamdaki iyonlar helyosfer çevresinde sapma göstermelerine karşın, yüksüz yıldızlararası atomların büyük bir bölümü (çoğu hidrojen ve helyum olmak üzere) güneş sisteminin içerisine girebilmektedir. Helyosferdeki yaygın gazın yaklaşık %98 i (gezegen ve gezegen sistemleri ile kuyruklu yıldızlar hariç) yıldızlararası maddeyi oluşturur. Yıldızlararası ortamdan güneş sistemine akan madde yoğunluğu ile güneş rüzgârının yoğunluğu Jüpiter gezegenin yörüngesi civarında dengeye ulaşır.
Güneş sistemi içindeki ilk yıldızlararası maddenin keşfi 1960 larda bir uzay aracı ile yerkoronasını -bir gezegen atmosferinin en dışta bulunan ve yüksüz hidrojen atomlarından oluşan tabakası- incelenirken bulunmuştur. Uzay aracı dünyanın yerkoronası üzerinde Lyman-alfa morötesi radyasyonunu zayıf bir floerason parlaklığında gözlemiştir. Bir Lyman-alfa fotonu, yüksüz hidrojen atomundaki bir elektronun birinci enerji seviyesinden temel enerji seviyesine geçtiğinde yayınladığı enerji olarak bilinir. Yıldızlararası uzayda hidrojen atomlarının elektronları temel seviyede bulunduklarından oldukça soğukturlar. Bununla birlikte, yüksüz yıldızlararası atomlar güneş sisteminin içine doğru ve özellikle güneşe doğru hareket ettikçe, güneşten gelen radyasyonun etkisinden dolayı elektronlar ilk uyarılma enerji seviyesine çıkarlar. Bir elektron bu enerji seviyedeki duruş süresi tamamlandığında, temel enerji seviyesine geri dönerek bir Lyman-alfa fotonu yayınlar. Bu işlev gezegenler arasında gözlenen zayıf morötesi ışınımın kaynağıdır. Işınımın daha yeni bir gözlemsel kanıtı, SOHO uydusu üzerinde bulunan TRACE aletinin gezegenlerarası Lyman-alfa şiddet haritasının oluşturulmasıyla elde edilmiştir.
1960 larda yapılan bu keşiften beri, yıldızlararası maddenin birçok kanıtı güneş sistemi içinde elde edilmiştir. Astronomlar yıldızlararası ortamın güneşten birkaç A.B. içinde iyonize olduğunu bilmektedirler. İyonizasyonun bir kısmı güneş radyasyonunun foto-iyonizasyonundan, bir kısmı da güneş rüzgârının yük değişiminden kaynaklanmaktadır. Diğer yandan, helyum atomları güneş fotonları tarafından iyonize edilmeden önce güneşe 1 A.B. uzaklığına kadar yaklaşabilirler. Bazı yüksüz helyum atomları güneşin iyonizasyonundan kaçabilmelerine karşın, güneşin çekim alanına girerek güneş etrafında konik bir yapı içerisinde toplanır. Dünya her kasım ayının sonunda bu koninin içerisinden geçer (Şekil 4). Yıldızlararası atomlar iyonize olduğundan, güneş rüzgârı plazması bu atomları toplayarak helyosferin sonlandırma şokuna iter. Yakalanan iyonlar, güneş rüzgârı ile yıldızlararası ortamın yüksüz atomlarının birbirleriyle etkileşmesi sonucunda üretildiğinden ölçümleri yıldızlararası ortamın kompozisyonu hakkındaki ip uçlarını verir. Toplanan helyum iyonları ilk kez Eberhard Möbius liderliğindeki bir grup tarafından dünya yakınlarında keşfedilmiştir. Daha yeni keşifler, iç güneş sisteminde bulunan Ulysses uzay aracındaki SWICS aygıtı kullanılarak gerçekleştirilmiştir. SWICS aygıtı toplanan iyon popülasyonunun içinde nitrojen, neon, oksijen, helyum ve neon izotoplarını tespit etmiştir. Bu elementlerin her biri yıldızlararası gazda kısmen yüksüz halde bulunduğundan helyosfere kolaylıkla girebilir. Yakındaki yıldızlararası gazın iyon bolluğu ile toplanan iyon bolluklarının karşılaştırılmasından, güneş sistemi içinde bulunan yıldızlararası gazın orijinal iyonizasyon seviyeleri hakkında ip uçları elde edilebilir.
Şekil 4. Helyosfere giren yıldızlararası helyum atomları (pembe ok) güneşin çekim kuvvetinden dolayı konik bir yapı içinde toplanır. Yüksüz yıldızlararası parçacıkların yaklaşık %10 u helyum atomudur. Dünya her yıl kasım ayının son günlerinde helyum atomların oluşturduğu koniğin içinden geçmektedir. Toplanan iyonlar sonlandırma şokuna ulaştıklarında, kozmik ışın enerjilerine ivmelenerek anormal kozmik ışın popülasyonu olarak bilinen bir bileşeni oluştururlar. Bu anormal popülasyonun galaktik kozmik ışın spektrumunun düşük enerji bölgesinde oluştuğu görülür. Bu parçacıkların “anormal” olarak isimlendirilmelerinin nedeni, enerjilerinin helyosfere girecek kadar büyük olmamasındadır. Bu da onların güneş sistemi içinde oluştuğunu gösterir. Helyosferden geri dönen anormal kozmik ışınlar iç güneş sistemine doğru ilerler. Bu esnada bazı kozmik ışınlar dünyanın manyetosferi tarafından yakalanabilir. Başka bir ifade ile, bu parçacıklar helyosfer içinde ileri geri hareketlerde bulunurlar: Parçacıklar güneş sistemi içerisine yıldızlararası nötral atomlar olarak taşınır. Toplanmış iyonlar sonlandırma şokunun ötesine atılır ve iç güneş sistemi içersine anormal kozmik ışınlar olarak geri dönerler (Şekil 5)
Şekil 5. Helyosferin ve yakın yıldızlararası ortamın kesiti. Atomik parçalar dış uzaydan güneş sistemi içine gelen yegâne ziyaretçiler değillerdir. Eberhard Gruen liderliğindeki bir grup Ulysses ve Galiloe uydularında bulunan toz dedektörleriyle 0.2 – 6 mikrometre boyutlarında “büyük” toz tanelerini helyosfer içinde keşfetmişlerdir. Bu toz tanecikleri Yerel Yıldızlararası Rüzgârın doğrultusunda ve hızında hareket etmektedir. Büyük toz taneciklerinin güneş aktivite çeviriminden ve güneş rüzgârından etkilenmeyen yörüngelerinin olmasıyla beraber, yıldızlararası helyum atomlarının güneş çevresinde oluşturdukları koniğe benzer bir yapılaşmaları da vardır. Dünya her kasım ayının sonlarında toz parçacıklarının oluşturduğu koniğin içinden geçmektedir (Şekil 6). Orta boyutlardaki toz parçacıkları güneş rüzgârının -güneş çeviriminin 11 yıllık evresinde- manyetik polaritedeki değişiminden dolayı hem tutulum düzleminde hem de bu düzlemin dışında bulunabilmektedir.
Şekil 6. Yıldızlararası ortamdan güneş sisteminin içerisine girmekte olan toz parçacıkları değişik boyutlarda olabilmektedir-ler (çok küçük toz parçacıkları helyosfere giremez). Yaklaşık 1.4 mikrometre (üstte) büyüklüğündeki toz tanecikleri, helyum atomlarının güneş çevresinde oluşturdukları koniğe benzer bir yapılaşması vardır. Dünya, her yıl kasım ayının son günleri ile aralık ayının ilk günleri arasında toz parçacıklarının oluşturduğu yapının içerisinden geçmektedir.